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The recent preparation of the first compound containing a Zn-
Zn bond, Cp*Zn-ZnCp* (Cp* ) C5Me5), 1,1,2 is a remarkable
achievement. The characterization of other such compounds is
desirable for further exploration of Zn-Zn bond chemistry.3-6 To
this end, we now report the synthesis and molecular structure7 of
the second compound with a Zn-Zn bond, RZn-ZnR (R ) [{-
(2,6-Pri2C6H3)N(Me)C}2CH]), 2 (Dipp ) 2,6-diisopropylphenyl).

Our route to 2 began with the preparation of the lithium
derivative, RLi (R) [{(2,6-Pri2C6H3)N(Me)C}2CH])8 followed by
its reaction with ZnI2 in Et2O to give RZn(µ-I)2Li(OEt2)2.9

Potassium reduction of RZn(µ-I)2Li(OEt2)2 affords2 as colorless,
air- and moisture-sensitive crystals (eq 1).

Supporting computations on related RZn-ZnR systems provide
insight into the nature of the Zn-Zn bond.

Compounds with homonuclear metal-metal bonds of the heavier
group 12 metals, cadmium10,11 and mercury,12 are well-known.
Alkali or alkaline earth metal reduction of metal halides, complexed
by sterically demanding ligands, has proven to be a fruitful synthetic
approach to compounds containing main group metal-metal
bonds13-16 and main group metal-transition metal bonds.17-19 We
applied this approach to the preparation of2 by utilizing the well-
known sterically encumberedâ-diketiminate ligand, [{(2,6-
Pri2C6H3)N(Me)C}2CH]-.20-22 Thisâ-diketiminate ligand has been
used to stabilize an In-In bond, R(Cl)In-In(Cl)R,23 and a recently
reported Mn-Mn bond, RMn-MnR.24

X-ray structure analysis confirms the dimeric nature of2 and
the central Zn-Zn bond (Figure 1). The two ligands are arranged
in a nearly orthogonal orientation with a N(1)-Zn(1)-Zn(2)-N(3)
torsion angle of 86.6°, thus providing effective steric protection of
the Zn-Zn bond (Figure 1b). The Zn-Zn distance in2, 2.3586(7)
Å, is only about 0.05 Å longer than that of 2.305(3) Å reported for
1. However, the Zn-Zn bond lengths for1 and2 are notably shorter
than the Zn‚‚‚Zn separation of 2.4513(9) Å in the related zinc
hydride dimer, RZn(µ-H)2ZnR (R ) [{(2,6-Me2C6H3)N(Me)C}2-
CH]).25 Moreover, the1H NMR resonance for the bridging zinc
hydride in RZn(µ-H)2ZnR was found at 4.59 ppm. This value is

close to the 4.56 ppm reported for a tris(pyrazolyl)hydroborato
complex with a terminal Zn-H.26 The fact that no such zinc hydride
1H resonance was observed for2, coupled with supporting structural
and computational data (Vide infra), further affirms2.

The six-membered C3N2Zn rings of2 are not planar but adopt a
puckered conformation with the zinc atom residing 0.65 Å out of
the N-C-C-C-N plane. A similarly puckered C3N2Zn ring in
RZnN(SiMe3)2 (R ) [{(2,6-Pri2C6H3)N(Me)C}2CH])27 has been
reported. However, the C3N2Zn rings are planar in RZn(µ-H)2ZnR
(R ) [{(2,6-Me2C6H3)N(Me)C}2CH]).25 The zinc atoms in2 adopt
a trigonal planar geometry, while the Zn-N bond distances of
2.005(3) and 2.014(3) Å are among the longest on record.28

The Zn-Zn bond of2 was probed by B3LYP/DZP++ and BP86/
DZP++ density functional theory (DFT) computations on the RZn-
ZnR (R ) [(HNCH)2CH]) model compound,2H (Figure 2a). As
found in 2, the perpendicularD2d conformation of2H is slightly
favored, with theD2h rotation transition state being only 0.26
(B3LYP) or 0.37 kcal/mol (BP86) higher in energy than theD2d

minimum. The C3N2Zn rings of2H are planar, rather than having
the zinc atoms puckered out-of-plane, as observed experimentally
in 2. Indeed, 2H may be regarded as an isoelectronic and a
potentiallymetalloaromatic29 analogue of biphenyl with a central
Zn-Zn bond: two C-C-C fragments of each ring having been
replaced by isoelectronic N-Zn-N units. Aromaticity was probed
by computing nucleus-independent chemical shifts (NICS)30 on the
simple benzene-like cyclic C3H5N2ZnH monomer. The refined
NICS(0)π zz value of -7.6 (based on the tensor component
perpendicular to the ring)31 reveals weak aromatic character
(compare the-36.6 benzene and the-1.0 1,4-cyclohexadiene
NICS(0)π zz values at the same level).

RZn(µ-I)2Li(OEt2)2 98
K

2 (1)

Figure 1. (a) Molecular structure of2 (thermal ellipsoids are shown at
30% probability levels). Selected bond distances (Å) and angles (deg): Zn-
(1)-Zn(2) 2.3586(7), Zn(1)-N(1) 2.005(3), Zn(1)-N(2) 2.013(3), Zn(2)-
N(3) 2.014(3), Zn(2)-N(4) 2.010(3); N(1)-Zn(1)-N(2) 93.65(13), N(1)-
Zn(1)-Zn(2) 131.12(9), N(2)-Zn(1)-Zn(2) 134.10(9), N(3)-Zn(2)-N(4)
93.43(13), N(3)-Zn(2)-Zn(1) 132.62(9), N(4)-Zn(2)-Zn(1) 132.76(10).
(b) Space filling model of2.
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The bulky substituents contribute to the puckered conformation
of the C3N2Zn rings in2. Indeed, the C3N2Sn ring of SnCl(Me)2-
[CH(CPhNSiMe3)2] is puckered, while that of the less sterically
encumbered SnCl(Me)2[CH(CPhNH)2] approaches planarity.32 The
computed Zn-Zn distances of 2.392 (B3LYP) and 2.366 Å (BP86)
for 2H agree well with the experimental Zn-Zn value of 2.3586-
(7) Å for 2. The corresponding hydride-bridged RZn(µ-H)2ZnR (R
) [(HNCH)2CH]) model compound,2H(µ-H)2, was also examined.
The D2h 2H(µ-H)2 minimum has coplanar C3N2Zn rings (Figure
2b). The Zn-Zn distances of 2.440 (B3LYP) and 2.412 Å (BP86)
in model2H(µ-H)2 approach the experimental value of 2.4513(9)
Å for RZn(µ-H)2ZnR (R ) [{(2,6-Me2C6H3)N(Me)C}2CH])25 but
are notably longer than those computed for2H and found
experimentally for2. These computational results of the model
compounds2H and 2H(µ-H)2 provide further support for the
structure of2. Bubbling of H2 into a toluene solution of2, however,
did not result in hydride formation.

While the 2H LUMO (Figure 3) is entirely ligand-based with
π-symmetry, the2H HOMO corresponds to the Zn-Zn σ-bonding
orbital. Natural bond orbital (NBO) analysis shows that the natural
charge of the zinc atoms in2H is +0.85, consistent with the+1
oxidation state of the zinc atoms in2 and2H. The 65.2 kcal/mol
Zn-Zn bond dissociation energy of2H compares well with the
67.7 kcal/mol reported for1.6 The disproportionation energy of2
to R2Zn and Zn is 5.56 kcal/mol (B3LYP). The Zn-Zn bond has
95% s, 4% p, and 1% d character. The NLMO/NPA Zn-Zn bond
order of 0.87 and the electron occupancy of the Zn-Zn bonding
orbital of 1.9542 are supportive of the intriguing Zn-Zn single
bond.
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Figure 2. Model compounds2H computed (a) withD2d symmetry and
2H(µ-H)2 (b) with D2h symmetry (all bond distances are in Å).

Figure 3. Representation of the frontier molecular orbitals of2H from
DFT calculations.33
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